Mitomycin C retardation of corneal fibroblast migration via sustained dephosphorylation of paxillin at tyrosine 118.
نویسندگان
چکیده
PURPOSE To investigate how mitomycin C (MMC) modulates corneal fibroblast migration and its molecular mechanisms in the wound healing process. METHODS After treatment with 0 and 0.2 mg · mL(-1) MMC for 5 minutes, effect of MMC on cell migration of human corneal fibroblasts (HCFs) was examined with a cell migration assay. Both focal adhesion kinase (FAK) and paxillin (PXN) expressions in HCFs were analyzed by semiquantitative real-time PCR, immunoblotting, and immunofluorescence confocal microscopy. Using gene silencing or gene overexpression with lentiviral-based pseudovirion infection, the phosphorylation level of FAK, PXN, and mutated PXNs at tyrosine sites 31 (Y31F-EGFP) and 118 (Y118F-EGFP) were verified in HCFs. RESULTS MMC retarded HCF migration at 1 and 2 days posttreatment (dpt). MMC reduced levels of FAK transcript and FAK protein, but increased both transcript and protein expression of PXN at 1 and 2 dpt. Furthermore, MMC upregulated FAK-pY397, which subsequently enhanced PXN-pY31 in a dose-dependent manner at 1 dpt. Concurrently, MMC downregulated PXN-pY118 at 1 dpt. However, MMC treatment resulted in dephosphorylation of FAK-pY397, PXN-pY31, and PXN-pY118 at 2 dpt. The FAK/PXN complex in MMC-treated HCFs was detected at focal adhesion sites more than at the leading edge at 1 and 2 dpt, contributing to retardation of HCF migration. Y118F-EGFP-expressing HCFs exhibited lower mobility than that of PXN-EGFP- or Y31F-EGFP-expressing HCFs. CONCLUSIONS The sustained PXN-pY118 dephosphorylation resulted in steadfastness of an incompletely active FAK/PXN complex at focal adhesion sites and played a pivotal role in MMC-retarded HCF migration.
منابع مشابه
RACK1 regulates Src activity and modulates paxillin dynamics during cell migration.
Receptor for Activated C Kinase, RACK1, is an adaptor protein that regulates signaling via Src and PKC-dependent pathways, and has been implicated in cell migration. In this study we demonstrate novel functions for RACK1 in regulating adhesion dynamics during cell migration. We report that cells lacking RACK1 are less motile and show reduced dynamics of paxillin and talin at focal complexes. To...
متن کاملPhosphorylation of Tyrosine Residues 31 and 118 on Paxillin Regulates Cell Migration through an Association with Crk in Nbt-II Cells
Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phospho...
متن کاملLocalized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration
RhoA activity is transiently inhibited at the initial phase of integrin engagement, when Cdc42- and/or Rac1-mediated membrane spreading and ruffling predominantly occur. Paxillin, an integrin-assembly protein, has four major tyrosine phosphorylation sites, and the phosphorylation of Tyr31 and Tyr118 correlates with cell adhesion and migration. We found that mutation of Tyr31/118 caused enhanced...
متن کاملGlial cell-derived neurotrophic factor (GDNF)-induced migration and signal transduction in corneal epithelial cells.
PURPOSE To identify signal-transduction pathways induced by glial cell-derived neurotrophic factor (GDNF) in corneal epithelial cells and to characterize its effect on cell migration. METHODS Expression of GDNF receptor (GFR) alpha-1 in human corneal epithelium was detected by RT-PCR and Western blot analysis. Expression and phosphorylation of Ret, activation of focal adhesion kinase (FAK) an...
متن کاملRole of formation of an ERK-FAK-paxillin complex in migration of human corneal epithelial cells during wound closure in vitro.
PURPOSE Migration of corneal epithelial cells is an important step in the corneal wound healing. The role of extracellular signal regulated kinase (ERK) for the regulation of cell migration during wound closure was examined. METHODS Scratch wounds were introduced into human corneal epithelial cells in the absence or presence of PD98059, an ERK signaling inhibitor. The phosphorylation and loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 53 3 شماره
صفحات -
تاریخ انتشار 2012